Page 41 - Saraa - No.37
P. 41
مقالات و یادداشت
برق
age spam filtering using multiple classifiers. in Compu� .در ایـن مقالـه در برابـر تغییـرات جابجایـی کاراکترهـا نیـز مقـاوم باشـد
tational Intelligence and Computing Research (ICCIC), ، در گام نرما لســازی،در ســایر رو شهــای بازشناســی نــوری کاراکترهــا
2014 IEEE International Conference on. 2014. IEEE. شـدت روشـنایی پیکسـ لها بـه مقادیـر بیـن صفـر و یـک نرما لسـازی
بعـد از ایـن کـه پیکسـ لهای مربـوط بـه، امـا در ایـن مقالـه.م یشـود
[15] Gargiulo, F. and C. Sansone. Combining visual هـر یـک از کاراکترهـا،کاراکترهـا مشـخص و از پ سزمینـه جـدا شـدند
and textual features for filtering spam emails. in Pattern .از لحـاظ مقیاسـی بـه مقـدار از پیـش تعییـن شـدهای نرمـال م یشـوند
Recognition, 2008. ICPR 2008. 19th International Con� روش بازشناسـی نـوری کاراکترهـای ارائـه شـده در ایـن،بـه ایـن ترتیـب
ference on. 2008. IEEE.
.مقالـه در برابـر تغییـرات مقیـاس کاراکترهـا مقـاوم م یشـود
[16] Stuart, I., S.-H. Cha, and C. Tappert, A neural
network classifier for junk e-mail. Document Analysis منابع
Systems VI, 2004: p. 442-450. [1] Dhanaraj, S. and V. Karthikeyani. A study on
e-mail image spam filtering techniques. in Pattern Rec�
[17] Liu, Q., et al. Efficient modeling of spam images. ognition, Informatics and Mobile Engineering (PRIME),
in Intelligent Information Technology and Security Infor� 2013 International Conference on. 2013. IEEE.
matics (IITSI), 2010 Third International Symposium on. [2] Uemura, M. and T. Tabata. Design and evaluation
2010. IEEE. of a Bayesian-filter-based image spam filtering method.
in Information Security and Assurance, 2008. ISA 2008.
[18] Wang, C., et al. Image spam classification International Conference on. 2008. IEEE.
based on low-level image features. in Communications, [3] Soranamageswari, M. and C. Meena. Statistical
Circuits and Systems (ICCCAS), 2010 International Con� feature extraction for classification of image spam us�
ference on. 2010. IEEE. ing artificial neural networks. in Machine Learning and
Computing (ICMLC), 2010 Second International Confer�
[19] Wu, C.-T., et al. Using visual features for an� ence on. 2010. IEEE.
ti-spam filtering. in Image Processing, 2005. ICIP 2005. [4] Attar, A., R.M. Rad, and R.E. Atani, A survey of
IEEE International Conference on. 2005. IEEE. image spamming and filtering techniques. Artificial In�
telligence Review, 2013: p. 1-35.
[20] Xu, Z., H.-g. Wang, and Z.-z. Shao. Evaluation [5] Wakade, S.V., Classification of Image Spam.
of image spam classification system based on AHP. in 2011, University of Akron.
Computational Intelligence and Software Engineering, [6] Cumming, J.G., The Spammer'sCompendium, in
2009. CiSE 2009. International Conference on. 2009. http://www.jgc.org/tsc.html. 2010.
IEEE. [7] Bowling, J.R., P. Hope, and K.J. Liszka. Spam im�
age identification using an artificial neural network. in
[21] Mehta, B., et al. Detecting image spam using MIT SPAM Conference. 2008.
visual features and near duplicate detection. in Pro� [8] Jithesh, K., K. Sulochana, and R.R. Kumar. Opti�
ceedings of the 17th international conference on World cal character recognition (OCR) system for Malayalam
Wide Web. 2008. ACM. language. in National Workshop on application of lan�
guage technology in Indian languages. 2003.
[22] Ma, W., D. Tran, and D. Sharma. Detecting im� [9] Saraubon, K. and B. Limthanmaphon. Fast effec�
age based spam email. in International Conference on tive botnet spam detection. in Computer Sciences and
Hybrid Information Technology. 2006. Springer. Convergence Information Technology, 2009. ICCIT'09.
Fourth International Conference on. 2009. IEEE.
[23] Fumera, G., I. Pillai, and F. Roli, Spam filtering [10] Liu, T.-J., W.-L. Tsao, and C.-L. Lee. A high per�
based on the analysis of text information embedded formance image-spam filtering system. in Distributed
into images. Journal of Machine Learning Research, Computing and Applications to Business Engineering
2006. 7(Dec): p. 2699-2720. and Science (DCABES), 2010 Ninth International Sym�
posium on. 2010. IEEE.
[24] Keys R (1981) Cubic convolution interpolation [11] Krasser, S., et al. Identifying image spam based
for digital image processing. IEEE Trans Acoust Speech on header and file properties using C4. 5 decision trees
Signal Process29(6)1153–1160 and support vector machine learning. in Information
Assurance and Security Workshop, 2007. IAW'07. IEEE
[25] Canny, J., A computational approach to edge SMC. 2007. IEEE.
detection. IEEE Transactions on pattern analysis and [12] Liu, Q., et al. Feature selection for image spam
machine intelligence, 6(1986) p. 698-679. classification. in Communications, Circuits and Systems
(ICCCAS), 2010 International Conference on. 2010. IEEE.
[26] Chen, J., et al., An intelligent character [13] Gao, Y., A. Choudhary, and G. Hua. A nonneg�
recognition method to filter spam images on cloud. Soft ative sparsity induced similarity measure with appli�
Computing,3(21 .2017) p. 763-753. cation to cluster analysis of spam images. in Acoustics
Speech and Signal Processing (ICASSP), 2010 IEEE Inter�
[27] Neumann, L. and J. Matas (2016). "Real-time national Conference on. 2010. IEEE.
lexicon-free scene text localization and recognition." [14] Das, M., et al. A modular approach towards im�
IEEE transactions on pattern analysis and machine
intelligence 1885-1872 )9(38.
[28] Solomonoff, Ray (1957). "An Inductive Infer�
ence Machine". IRE Convention Record. Section on In�
formation Theory, part 2. pp. 56–62.
[29] Lucas, S.M., Panaretos, A., Sosa, L., Tang, A.,
Wong, S., Young, R., 2003. ICDAR2003 robust reading
competitions, Seventh International Conference on
Document Analysis and Recognition, 2003. Proceed�
ings. Citeseer, pp. 682-687.
[30] Wang K, Babenko B, Belongie S. End-to-end
scene text recognition. In Proceedings of 2011 IEEE
International Conference on Computer Vision. 2011,
1457–1464
41 ســرا | فصلنامه تخصصی سازمان نظام مهندسی ساختمان استان سمنان